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Reminder about Assessment 1

• Due on 10th November
• Read the assignment brief 

(https://kennysmithed.github.io/oels2022/assessment/AssignmentBr
ief2022.pdf)
• I’ll set aside time for questions in next week’s lecture
• No questions after 10am on Monday 7th November!

https://kennysmithed.github.io/oels2022/assessment/AssignmentBrief2022.pdf
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Variation in language

Languages exhibit variation at all levels (paraphrase, synonymy, 
allomorphy, allophony), but variation is constrained
• Languages have lexicons and grammars
• Linguistic (phonological, lexical, syntactic, semantic) or sociolinguistic 

conditioning of alternation
• English past tense allomorphy: hunt/ɪd/ vs fish/t/
• Noun classes: la chaise, le sofa, la fille, le garçon 
• T-glottaling: glo/t/al vs glo/ʔ/al

Why is language like this?



Variation-learning experiments

glim cow fip
ooshra buzzo trunko
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Figure 1

Example test trials for binary (left) and ternary (right) tasks. Across Experiments

1, 1B and 2, adult human participants are presented with shapes and are asked to select

one using the arrow keys; in binary tasks, they only use the left and right keys, and in

ternary tasks, they use the left, up and right keys. In Experiment 1 and 1B (standard

reinforcement procedure), participants receive feedback after selection, which indicates

whether their selection is correct or not and the bonus reward accumulated. In Experiment

2 (guidance reinforcement procedure), participants also receive the same feedback on their

selection. However, after incorrect responses they are told which would have been the

correct response and are asked to select it to be rewarded. In Experiments 3 and 4 we

adapt the procedures applied in Experiments 1 (and 1B) and 2 for baboons respectively.

Baboons are presented with the same shapes and are asked to select one by screen-touch.

In Experiment 3 participants receive a rice pu� after a correct selection and a green screen

signalling failure after an incorrect selection. In Experiment 4 correct responses lead to

a rice-pu� reward and incorrect responses are followed immediately by a correction trial

(without the display of a green screen). In the correction trial, all shapes disappeared from

the screen aside from the target shape, and the trial ends when baboons select the shape and

received a rice-pu� reward.
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Figure 1: Each pane displays the percentage of participants that responded with a given output frequency of the minority marble
(m) during testing. Columns are the input ratio of m:M during training. Dashed lines mark the input frequency of m. In the
one-item task, participants probability matched, reproducing the input ratio with high fidelity. This task was between-subjects;
each participant was trained on one input ratio only. In the six-item task, participants were more likely to regularize than to
reproduce the input ratio. This task was within-subjects; each participant was trained on all six input ratios concurrently.

60 60

2 sec

2 sec

Figure 2: Training and testing trials for the six-item task.

same bag. In each training trial, a picture of the bag was
displayed for 1000 milliseconds and then a marble (blue or
orange) appeared over the bag for 2000 milliseconds. There
were 10 training trials, with no break between trials. In each
testing trial, the bag was displayed with the two marble colors
below. Participants mouse clicked on a marble to make their
choice of one draw from the bag. Their choice was displayed
above the bag for 2000 milliseconds and then the next testing
trial began. There were 10 testing trials with no breaks be-
tween trials. Locations (left or right) of the blue and orange
marbles were held constant across test trials for each partici-
pant, but counterbalanced across participants.

A fixed ratio of blue to orange marbles was shown in the
training phase. Each participant was randomly assigned to
one of 6 training conditions based on this ratio. The color of
the training ratio’s minority marble (m) and majority marble
(M) was counterbalanced across participants. All possible ra-

tios of m:M were tested and will be referred to as the 0:10,
1:9, 2:8, 3:7, 4:6, and 5:5 conditions. 192 participants took
part in this task, with 32 in each condition.

Six-item task This task is based on the word frequency
learning task from Reali and Griffiths (2009). Participants
observed 10 marble draws each from six different containers,
totaling 60 marble draws (see Figure 2). Each container was
associated with 2 unique marble colors (12 unique marble
colors were therefore used). Training and testing trials were
identical to the one-item task. Each container was uniquely
associated with one of the possible ratios specified by condi-
tion 0:10, 1:9, 2:8, 3:7, 4:6, and 5:5 above. Thus, the six-item
task is a within-subject version of the one-item task, with the
addition that training and testing trials from all six conditions
are interleaved. Assignments of a ratio and marble colors (in
predefined color pairs) to each container was randomized per
participant. 64 participants took part in this task. Two ad-
ditional versions of this experiment were also run; one where
all 6 bags were in condition 0:10 (each container was mapped
to one color only) and one where all 6 containers were in con-
dition 5:5. Each of these versions was completed by 32 new
participants.

Experiment results

Participants in the six-item task were more likely to regular-
ize their responses per container than participants in the one-
item task. Here, we refer to regularization as the production
of a more extreme ratio than that observed during training,



only by the use of linguistic stimuli and minimal adaptation of the
instructions to the linguistic domain. This condition constitutes a
replication of the word learning experiment in Reali and Griffiths
(2009), but with different object stimuli, modified word stimuli,
and participants who completed the experiment online rather than
in the laboratory. There were 64 participants in this condition,
yielding data for 384 (64× 6) input ratios.

3.4. Procedure

The experiment consisted of an observation phase and a production
phase. Fig. 2 shows the structure and timing of the trials. Participants
were not told how many observation or production trials there would
be. In the observation phase, marble/word stimuli were presented in
random order. In the high load conditions, the containers/objects were
presented in random order. In each production trial, the left-right

location of the two marbles/words was randomized. When the parti-
cipant moused over an answer, a 100× 100 pixel box was displayed
around the choice. When clicked, the box remained and an OK button
appeared equidistant between the two choices. Participants could
change their answer and clicked OK to confirm their final response.
Their choice was shown over the container/object and the next trial
began. The OK button served to re-center the participant’s cursor be-
tween trials.

After the production phase, participants were asked to estimate the
generating ratio that underlies the input ratio they saw. This was ac-
complished by asking them how many marbles of each color were in
each container, or how often each word is said for each object in the
artificial language. Participants provided their response with a discrete
slider over 11 options of relative percentages (Fig. 3).

3.5. Entropy of the training stimuli set

Each participant observes a stimuli set that is composed of co-oc-
currences between marbles and containers or words and objects. For the
purpose of quantifying the variation in the stimuli sets, we consider the
marbles and words to be variants and consider the containers and ob-
jects to be contexts. Table 1 shows the co-occurrence frequencies be-
tween contexts and variants. In the high cognitive load conditions, this
table describes the complete stimuli set that each participant was
trained on in the observation phase. In the low cognitive load condi-
tions, each participant was trained on only one row from the this table.
Fig. 4 shows the entropy values associated with Table 1 and describes
the population-level variation in stimuli. These values are the same
across conditions, allowing the direct comparison of mean change in
entropy between conditions.

It is important to note that the experimental design prevents parti-
cipants from changing H C( ) because contexts are presented the same
number of times in the observation and production phases. H C V( )
cannot be changed either because the only production options are the
two variants that were shown per context in the observation phase. If
participants regularize, H V H V C( ), ( ), and H V C( , ) will drop by the
same number of bits.

The entropy of the stimuli that one participant observes in the high
cognitive load condition is identical to Fig. 4. However, the entropy of

Fig. 2. Schema of the experiment’s observation and production phases. Top: Low cognitive load condition. Bottom: High cognitive load condition. Examples shown
are the linguistic condition. In the non-linguistic condition, containers are shown in place of the object, and marbles are shown in place of the words.

Fig. 3. Screen shot of the sliders page in the high cognitive load linguistic
condition, showing three answers selected. Participants could change their
answers up until “Save Answers” was clicked. “Back” took participants back to
the question and instruction about the sliders. In the low load condition, only
one slider was shown.
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Figure 1: Each pane displays the percentage of participants that responded with a given output frequency of the minority marble
(m) during testing. Columns are the input ratio of m:M during training. Dashed lines mark the input frequency of m. In the
one-item task, participants probability matched, reproducing the input ratio with high fidelity. This task was between-subjects;
each participant was trained on one input ratio only. In the six-item task, participants were more likely to regularize than to
reproduce the input ratio. This task was within-subjects; each participant was trained on all six input ratios concurrently.
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Figure 2: Training and testing trials for the six-item task.

same bag. In each training trial, a picture of the bag was
displayed for 1000 milliseconds and then a marble (blue or
orange) appeared over the bag for 2000 milliseconds. There
were 10 training trials, with no break between trials. In each
testing trial, the bag was displayed with the two marble colors
below. Participants mouse clicked on a marble to make their
choice of one draw from the bag. Their choice was displayed
above the bag for 2000 milliseconds and then the next testing
trial began. There were 10 testing trials with no breaks be-
tween trials. Locations (left or right) of the blue and orange
marbles were held constant across test trials for each partici-
pant, but counterbalanced across participants.

A fixed ratio of blue to orange marbles was shown in the
training phase. Each participant was randomly assigned to
one of 6 training conditions based on this ratio. The color of
the training ratio’s minority marble (m) and majority marble
(M) was counterbalanced across participants. All possible ra-

tios of m:M were tested and will be referred to as the 0:10,
1:9, 2:8, 3:7, 4:6, and 5:5 conditions. 192 participants took
part in this task, with 32 in each condition.

Six-item task This task is based on the word frequency
learning task from Reali and Griffiths (2009). Participants
observed 10 marble draws each from six different containers,
totaling 60 marble draws (see Figure 2). Each container was
associated with 2 unique marble colors (12 unique marble
colors were therefore used). Training and testing trials were
identical to the one-item task. Each container was uniquely
associated with one of the possible ratios specified by condi-
tion 0:10, 1:9, 2:8, 3:7, 4:6, and 5:5 above. Thus, the six-item
task is a within-subject version of the one-item task, with the
addition that training and testing trials from all six conditions
are interleaved. Assignments of a ratio and marble colors (in
predefined color pairs) to each container was randomized per
participant. 64 participants took part in this task. Two ad-
ditional versions of this experiment were also run; one where
all 6 bags were in condition 0:10 (each container was mapped
to one color only) and one where all 6 containers were in con-
dition 5:5. Each of these versions was completed by 32 new
participants.

Experiment results

Participants in the six-item task were more likely to regular-
ize their responses per container than participants in the one-
item task. Here, we refer to regularization as the production
of a more extreme ratio than that observed during training,



Sample size, study duration etc

• US-based MTurk workers
• N=512 after exclusions
• 4 minutes (1-item task) or 11.5 minutes (6-item task)
• $0.10 (1-item task) or $0.60 (6-item task) 😞



Fig. 5. Each row shows the results of one experimental condition. Each column corresponds to one of the six input ratios, ranging from 5:5 (left) to 10:0 (right). Each
pane contains the distribution of output ratios that participants produced in response to one input ratio. Output ratios are displayed on the x-axis as the number of
times a participant produced variant x from the input ratio x:y, where variant x corresponds to whatever marble/word was in the majority during the observation
phase. (In the 5:5 input ratio a random marble/word was coded as variant x.) All input ratios are indicated by a dashed line.

Fig. 6. Entropy drops when learners regularize. Each bar shows the average
change in Shannon entropy over all pairs of input-output ratios, per condition.
Stars indicate significant difference from zero. Error bars indicate the 95%
confidence intervals computed with the bootstrap percentile method (Efron,
1979). A significant drop in entropy means that participants regularized in that
condition. Non-significant differences from zero are obtained when participants
probability match. The lower and upper bounds on mean entropy change for
this experiment are 0.67 and 0.33+ bits.

Fig. 7. Raw changes in frequency fail to capture regularization behavior. Each
bar shows the average difference between the number of times participants
observed the majority variant in the training set and the number of times they
produced that variant in the testing phase. Error bars indicate the 95% con-
fidence intervals computed with the bootstrap percentile method (Efron, 1979).
Values significantly higher than zero indicate a population-level trend in over-
producing the majority variant. Values significantly lower than zero indicate a
population-level trend in over-producing the minority.
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Regularization during encoding, or retrieval?

estimate of their input data. The same linear mixed effects regression
analysis described in Section 4.2 was applied to this data, using the
difference in entropy between the produced and estimated ratios as the
dependent variable. In all conditions, production ratios are significantly
more regular than the estimates participants made (marbles1:
S E t p. . 0.03, (1152) 2.55, 0.01= = = ; marbles6: S E. . 0.03= ,
t p(1152) 6.97, . 001= < ; words1: S E t. . 0.03, (1152)= =

p8.20, . 001< ; words6: S E. . 0.03,= t (1152) 10.69= , p . 001< ). This
means that regularization occurs during the production phase and is
likely to be involved in the retrieval and use of frequency information.
Interestingly, production-side regularization occurs in all four condi-
tions, even in marbles1 where participants probability matched their
productions to their inputs (effectively “correcting” the variability bias
in their estimates). This suggests that regularity is broadly associated
with frequency production behavior, even in cases that do not lead to
overt regularization behavior.

In summary, raising cognitive load resulted in noisier encoding,
however the noise was not biased in the direction of regularity.
Estimates in the linguistic domain were not biased toward regularity
either. It appears that the bulk of regularization occurs during the
production-side of the experiment and is likely to involve processes of
frequency retrieval and use.

4.6. Individual differences in frequency learning strategy

The bimodal distributions over output ratios (refer back to Fig. 5)
suggest individual differences in frequency learning strategies. We
break frequency learning behavior into three categories: regularizing,
probability matching, and variabilizing. How many participants fall into
each category? And in the high load conditions, where participants
respond to more than one item, how consistent are their responses with
one strategy?

We define probability matching as sampling from the input ratio, with
replacement. This leads to output ratios that are binomially distributed3

about the mean (where the mean equals the input ratio). Although the
single most likely output ratio a participant could sample is the set of
input ratios itself, most probability matchers will sample a ratio that has
higher or lower entropy than the input ratio. We will classify partici-
pants who produced ratios within the 95% confidence interval of
sampling with replacement behavior as probability matchers. We
classify participants as variabilizers if they produced ratios with sig-
nificantly higher entropy than likely under probability matching be-
havior. These could be participants who were attempting to produce a
maximally variable set (all 5:5 ratios) or randomly selecting among the
two choices on each production trial. Likewise, we classify participants
as regularizers if they produced ratios with significantly lower entropy
than likely under probability matching behavior. It is important to note
that a participant with a very weak bias for regularity or variability may
consistently produce data that falls within the 95% confidence range of
probability matching. However, we take a conservative approach by
grouping individuals as regularizers or variabilizers only when prob-
ability matching has low probability.

In the low load conditions, where participants only sample one
ratio, the 95% confidence intervals on output ratios were determined
with the Clopper-Pearson exact method.4 In the high cognitive load
conditions, where participants sample a set of six ratios, we classify the
set of ratios according to their conditional entropy H V C( ) (refer back
to Section 2). The 95% confidence interval on conditional entropy for
probability matching in this experimental setup is 0.43 to 0.75 bits
(determined by 105 runs of simulated probability matching behavior).
Participants who produced data with entropy in the range

x0.43 0.75 were classified as probability matchers, those who
produced data in the range x0 0.43< were classified as regularizers,
and those who produced data in the range x0.75 1< were classified
as variabilizers.

Table 2 shows the number of participants that fell into each fre-
quency learning category, per condition. All strategies are represented
within each experimental condition. There is a significant effect of
cognitive load ( p(2) 151.63, . 0012 = < ) and domain
( p(2) 31.49, . 0012 = < ) on the distribution of frequency learning
strategies, meaning that the experimental manipulations elicit different
frequency learning strategies from participants. Because fewer data
points were collected from participants in the low load condition,
probability matching behavior is not easily ruled out, hence the high
number of participants classified as probability matchers in marbles1
and words1. It is possible that the difference in dataset size between the
low and high conditions is responsible for the significant effect of load.
The effect of domain, however, is reliably due to the experimental
manipulation. Therefore, the remainder of this section focuses on the
high load data.

Fig. 9 shows the set of six output ratios that each participant pro-
duced in the high cognitive load conditions. The sets are sorted by their
entropy and the shaded box shows the sets that fell into the

x0.43 0.75 bit range (classified as probability matchers). Partici-
pants to the left of the box are classified as regularizers and participants
to the right are classified as variabilizers. More regularizers were found
in the linguistic domain, more variabilizers were found in the non-lin-
guistic domain, and probability matchers seem equally likely to be
found in either domain. At the extreme left of the x-axis, we see the
subset of regularizers, numbering 6 participants in marbles6 and 22 in
words6, who produced a maximally regular set (all 10:0 or 0:10, con-
ditional entropy = 0 bits). No participants produced a maximally
variable set (all 5:5 ratios, conditional entropy = 1 bit). Participants
are more likely to maximally regularize in the linguistic condition

Fig. 8. Production bias, not encoding bias, drives regularization. Dark grey:
Average difference in regularity between the input ratios participants actually
observed and their estimates of the underlying ratio that generated the input
ratio. A significant increase in entropy means that participants estimated the
underlying ratio to be more variable than the input ratio, and a significant
decrease means they estimated it to be more regular. Light grey: Average dif-
ference between production ratio regularity and estimated ratio regularity.
Error bars indicate the 95% confidence intervals computed with the bootstrap
percentile method (Efron, 1979).

3 Humans can probability match with variance that is significantly lower than
binomial variance (Ferdinand, 2015, pp.45-57). Therefore, the definition of
probability matching used in this paper is a conservative one.

4 95% confidence interval on probability matching per input ratio: 5:5,
x0.19 0.81; 6:4, x0.26 0.88; 7:3, x0.35 0.93; 8:2, x0.44 0.97;

9:1, x0.55 0.99; 10:0, x0.69 1, where x is the frequency of the majority
variant.
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only by the use of linguistic stimuli and minimal adaptation of the
instructions to the linguistic domain. This condition constitutes a
replication of the word learning experiment in Reali and Griffiths
(2009), but with different object stimuli, modified word stimuli,
and participants who completed the experiment online rather than
in the laboratory. There were 64 participants in this condition,
yielding data for 384 (64× 6) input ratios.

3.4. Procedure

The experiment consisted of an observation phase and a production
phase. Fig. 2 shows the structure and timing of the trials. Participants
were not told how many observation or production trials there would
be. In the observation phase, marble/word stimuli were presented in
random order. In the high load conditions, the containers/objects were
presented in random order. In each production trial, the left-right

location of the two marbles/words was randomized. When the parti-
cipant moused over an answer, a 100× 100 pixel box was displayed
around the choice. When clicked, the box remained and an OK button
appeared equidistant between the two choices. Participants could
change their answer and clicked OK to confirm their final response.
Their choice was shown over the container/object and the next trial
began. The OK button served to re-center the participant’s cursor be-
tween trials.

After the production phase, participants were asked to estimate the
generating ratio that underlies the input ratio they saw. This was ac-
complished by asking them how many marbles of each color were in
each container, or how often each word is said for each object in the
artificial language. Participants provided their response with a discrete
slider over 11 options of relative percentages (Fig. 3).

3.5. Entropy of the training stimuli set

Each participant observes a stimuli set that is composed of co-oc-
currences between marbles and containers or words and objects. For the
purpose of quantifying the variation in the stimuli sets, we consider the
marbles and words to be variants and consider the containers and ob-
jects to be contexts. Table 1 shows the co-occurrence frequencies be-
tween contexts and variants. In the high cognitive load conditions, this
table describes the complete stimuli set that each participant was
trained on in the observation phase. In the low cognitive load condi-
tions, each participant was trained on only one row from the this table.
Fig. 4 shows the entropy values associated with Table 1 and describes
the population-level variation in stimuli. These values are the same
across conditions, allowing the direct comparison of mean change in
entropy between conditions.

It is important to note that the experimental design prevents parti-
cipants from changing H C( ) because contexts are presented the same
number of times in the observation and production phases. H C V( )
cannot be changed either because the only production options are the
two variants that were shown per context in the observation phase. If
participants regularize, H V H V C( ), ( ), and H V C( , ) will drop by the
same number of bits.

The entropy of the stimuli that one participant observes in the high
cognitive load condition is identical to Fig. 4. However, the entropy of

Fig. 2. Schema of the experiment’s observation and production phases. Top: Low cognitive load condition. Bottom: High cognitive load condition. Examples shown
are the linguistic condition. In the non-linguistic condition, containers are shown in place of the object, and marbles are shown in place of the words.

Fig. 3. Screen shot of the sliders page in the high cognitive load linguistic
condition, showing three answers selected. Participants could change their
answers up until “Save Answers” was clicked. “Back” took participants back to
the question and instruction about the sliders. In the low load condition, only
one slider was shown.
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Individual 
differences

( p(1) 10.2857, .0012 = = ). Although some participants regularized
with the majority variant exclusively, no participants regularized with
the minority variant exclusively. Points in the 0–4 range on the y-axis
correspond to output ratios that contained a large number of minority
variant productions (i.e. the majority variant had frequency of between
0 and 4). Most participants regularized with 1–2 minority variants and
4–5 majority variants.

In summary, we found that all frequency learning strategies, reg-
ularizing, probability matching, and variabilizing, are present in each
condition and the use of linguistic stimuli causes more participants to
consistently regularize.

4.7. Primacy and recency effects on regularization

Studies on regularization often find that participants regularize by over-
producing or over-predicting the majority variant, and this serves as the
standard definition of regularization (e.g. Hudson Kam & Newport, 2005).
However, many studies report some participants who regularize with the
minority variant (e.g. Hudson Kam & Newport, 2009; Reali & Griffiths,
2009; Smith & Wonnacott, 2010; Culbertson et al., 2012; Perfors, 2012;
Perfors, 2016). What causes some participants to regularize with the ma-

jority variant, and others to regularize with the minority variant? In the
previous section, we saw minority regularization is not due to individual
differences in frequency learning behavior. If minority regularization is not
a feature of individuals, it may be a feature of the training data they re-
ceived.

One possible data-driven explanation for minority regularization
lies in the effects of a stimulus’s primacy and recency on participant
behavior. In the observation phase, participants were presented with a
randomly-ordered sequence of variants, such that the probability of any
particular variant occurring at the beginning or end of the input se-
quence is proportional to its frequency in the sequence. Therefore, some

Table 2
Participants classified by frequency learning strategy. Percentages show how
the strategies break down within each condition.

Regularizers Probability matchers Variabilizers

marbles1 10 (5%) 173 (90%) 9 (5%)
words1 50 (26%) 139 (72%) 3 (2%)
marbles6 30 (47%) 15 (23%) 19 (10%)
words6 42 (66%) 14 (22%) 8 (12%)

Fig. 9. Linguistic and non-linguistic stimuli evoke different frequency learning strategies. Data are from the high cognitive load conditions marbles6 (top) and words6
(bottom). The x-axis shows participant number, sorted by their conditional entropy (low to high). The y-axis shows the frequency of the majority variant in the
participant’s output; each point represents performance on a single container/object, and there are therefore 6 points per participant. The shaded region contains all
participants classified as probability matchers. Participants to the left of the shaded region are classified as regularizers and participants to the right are classified as
variabilizers.
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with the majority variant exclusively, no participants regularized with
the minority variant exclusively. Points in the 0–4 range on the y-axis
correspond to output ratios that contained a large number of minority
variant productions (i.e. the majority variant had frequency of between
0 and 4). Most participants regularized with 1–2 minority variants and
4–5 majority variants.

In summary, we found that all frequency learning strategies, reg-
ularizing, probability matching, and variabilizing, are present in each
condition and the use of linguistic stimuli causes more participants to
consistently regularize.

4.7. Primacy and recency effects on regularization

Studies on regularization often find that participants regularize by over-
producing or over-predicting the majority variant, and this serves as the
standard definition of regularization (e.g. Hudson Kam & Newport, 2005).
However, many studies report some participants who regularize with the
minority variant (e.g. Hudson Kam & Newport, 2009; Reali & Griffiths,
2009; Smith & Wonnacott, 2010; Culbertson et al., 2012; Perfors, 2012;
Perfors, 2016). What causes some participants to regularize with the ma-

jority variant, and others to regularize with the minority variant? In the
previous section, we saw minority regularization is not due to individual
differences in frequency learning behavior. If minority regularization is not
a feature of individuals, it may be a feature of the training data they re-
ceived.

One possible data-driven explanation for minority regularization
lies in the effects of a stimulus’s primacy and recency on participant
behavior. In the observation phase, participants were presented with a
randomly-ordered sequence of variants, such that the probability of any
particular variant occurring at the beginning or end of the input se-
quence is proportional to its frequency in the sequence. Therefore, some

Table 2
Participants classified by frequency learning strategy. Percentages show how
the strategies break down within each condition.

Regularizers Probability matchers Variabilizers

marbles1 10 (5%) 173 (90%) 9 (5%)
words1 50 (26%) 139 (72%) 3 (2%)
marbles6 30 (47%) 15 (23%) 19 (10%)
words6 42 (66%) 14 (22%) 8 (12%)

Fig. 9. Linguistic and non-linguistic stimuli evoke different frequency learning strategies. Data are from the high cognitive load conditions marbles6 (top) and words6
(bottom). The x-axis shows participant number, sorted by their conditional entropy (low to high). The y-axis shows the frequency of the majority variant in the
participant’s output; each point represents performance on a single container/object, and there are therefore 6 points per participant. The shaded region contains all
participants classified as probability matchers. Participants to the left of the shaded region are classified as regularizers and participants to the right are classified as
variabilizers.
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domain-general and domain-specific constraints on frequency learning.
Would a data set which is culturally transmitted under conditions of only
high cognitive load (as in marbles6) or only linguistic framing (as in words1)
ultimately acquire the same amount of regularity?

To answer this question, we will explore the dynamics of change in
our existing data using an iterated learning model of cultural trans-
mission (Kirby et al., 2014) in which the output of one learner serves as
the input to another (e.g. Kirby, 2001; Brighton, 2002; Smith, Kirby, &

Brighton, 2003; Kirby, Cornish, & Smith, 2008; Reali & Griffiths, 2009;
Smith & Wonnacott, 2010). Several cycles of iterated learning result in
a walk over the complex landscape of constraints that shape the
transmitted behavior, and several walks can be used to estimate this
landscape and its likely evolutionary trajectories. Griffiths and Kalish
(2007) have shown that iterated learning is equivalent to a Markov
process, which is a discrete-time random process over a sequence of
values of a random variable, v v v, , ,t t t n1 2 …= = = , such that the random
variable is determined only by its most recent value (Papoulis, 1984,
p.535):
P v v v v P v v( , , , ) ( )t t t t t t1 2 1 1… == = (5)

This describes a memoryless, time-invariant, process in which only
the previous value (vt 1) has an influence on the current value (vt). This
is the case for iterated learning chains when learners only observe the
behaviors of the previous generation. All of the possible values of the
random variable constitute the state space of this system. A Markov
process is fully specified by the probabilities with which each state will
lead to every other state and these probabilities between states can be
represented as a transition matrix, Q (Norris, 2008, p.3). The prob-
abilities in Q are the landscape over which a culturally transmitted
dataset evolves.

In our experimental data, each state s corresponds to one of the
eleven possible ratios: s s s, , ,0 1 10… = {0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4,
7:3, 8:2, 9:1, and 10:0}, where st 1 is the input ratio and st is the output
ratio. Our experiment was designed so that Q could be estimated for
each of the four experimental conditions, by collecting data from par-
ticipants in each of the eleven possible states. Fig. 11 (top row) shows
the estimated transition matrix from each experimental condition. Each
estimation consists of the raw data in that condition, smoothed with a
small value length row

1
( )2= . Each cell in the matrix, Qij, gives the tran-

sition probability from state si t 1= to state sj t= .
The transition matrices can be used to estimate the regularity of the

data after an arbitrarily large number of learning cycles. No matter
what start state is used to initialize an iterated learning chain, an

Fig. 11. The data from the experiment is used to predict the cultural evolution of regularization. Top: Estimated transition matrices for each experimental condition
contain the probabilities that a learner produces any given output ratio from any given input ratio (presented in terms of the frequency of variant x in each input ratio
x:y). The shading of the cells denote the transition probabilities between states. Each row in the matrix corresponds to the distribution of output ratios produced in
response to one input ratio (rows are the same distributions in Fig. 5, only smoothed). For example, row 5 in the marbles1 transition matrix corresponds to the upper
left panel of Fig. 5, and the probability of transitioning from st 1 5= to st 6= is equivalent to the (smoothed) proportion of participants that produced a 6:4 ratio when
trained on a 5:5 ratio. Likewise, rows 4 and 6 correspond to the 6:4 panel in Fig. 5, but this distribution is flipped in row 4 to display the results in terms of the
minority variant. Bottom: The stationary distribution shows the percentage of learners who will produce each output ratio, after the ratios have evolved for an
arbitrarily large number of generations. Each stationary distribution is the solution to the matrix above it.

Fig. 12. Same learning biases lead to different degrees of regularization after
many generations of cultural transmission. Dark grey: Average change in en-
tropy after one learning cycle (same data in Fig. 6, reprinted here for com-
parison). Light grey: Average change in entropy of variants after convergence to
the stationary distribution (i.e. after an infinite number of learning cycles).
Error bars indicate 95% confidence intervals, computed by the bootstrap per-
centile method (Efron, 1979) on 10,000 resamples of the transition matrix,
where each matrix was solved for its stationary distribution and mean change in
entropy.
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Fig. 12. Same learning biases lead to different degrees of regularization after
many generations of cultural transmission. Dark grey: Average change in en-
tropy after one learning cycle (same data in Fig. 6, reprinted here for com-
parison). Light grey: Average change in entropy of variants after convergence to
the stationary distribution (i.e. after an infinite number of learning cycles).
Error bars indicate 95% confidence intervals, computed by the bootstrap per-
centile method (Efron, 1979) on 10,000 resamples of the transition matrix,
where each matrix was solved for its stationary distribution and mean change in
entropy.
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domain-general and domain-specific constraints on frequency learning.
Would a data set which is culturally transmitted under conditions of only
high cognitive load (as in marbles6) or only linguistic framing (as in words1)
ultimately acquire the same amount of regularity?

To answer this question, we will explore the dynamics of change in
our existing data using an iterated learning model of cultural trans-
mission (Kirby et al., 2014) in which the output of one learner serves as
the input to another (e.g. Kirby, 2001; Brighton, 2002; Smith, Kirby, &

Brighton, 2003; Kirby, Cornish, & Smith, 2008; Reali & Griffiths, 2009;
Smith & Wonnacott, 2010). Several cycles of iterated learning result in
a walk over the complex landscape of constraints that shape the
transmitted behavior, and several walks can be used to estimate this
landscape and its likely evolutionary trajectories. Griffiths and Kalish
(2007) have shown that iterated learning is equivalent to a Markov
process, which is a discrete-time random process over a sequence of
values of a random variable, v v v, , ,t t t n1 2 …= = = , such that the random
variable is determined only by its most recent value (Papoulis, 1984,
p.535):
P v v v v P v v( , , , ) ( )t t t t t t1 2 1 1… == = (5)

This describes a memoryless, time-invariant, process in which only
the previous value (vt 1) has an influence on the current value (vt). This
is the case for iterated learning chains when learners only observe the
behaviors of the previous generation. All of the possible values of the
random variable constitute the state space of this system. A Markov
process is fully specified by the probabilities with which each state will
lead to every other state and these probabilities between states can be
represented as a transition matrix, Q (Norris, 2008, p.3). The prob-
abilities in Q are the landscape over which a culturally transmitted
dataset evolves.

In our experimental data, each state s corresponds to one of the
eleven possible ratios: s s s, , ,0 1 10… = {0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4,
7:3, 8:2, 9:1, and 10:0}, where st 1 is the input ratio and st is the output
ratio. Our experiment was designed so that Q could be estimated for
each of the four experimental conditions, by collecting data from par-
ticipants in each of the eleven possible states. Fig. 11 (top row) shows
the estimated transition matrix from each experimental condition. Each
estimation consists of the raw data in that condition, smoothed with a
small value length row

1
( )2= . Each cell in the matrix, Qij, gives the tran-

sition probability from state si t 1= to state sj t= .
The transition matrices can be used to estimate the regularity of the

data after an arbitrarily large number of learning cycles. No matter
what start state is used to initialize an iterated learning chain, an

Fig. 11. The data from the experiment is used to predict the cultural evolution of regularization. Top: Estimated transition matrices for each experimental condition
contain the probabilities that a learner produces any given output ratio from any given input ratio (presented in terms of the frequency of variant x in each input ratio
x:y). The shading of the cells denote the transition probabilities between states. Each row in the matrix corresponds to the distribution of output ratios produced in
response to one input ratio (rows are the same distributions in Fig. 5, only smoothed). For example, row 5 in the marbles1 transition matrix corresponds to the upper
left panel of Fig. 5, and the probability of transitioning from st 1 5= to st 6= is equivalent to the (smoothed) proportion of participants that produced a 6:4 ratio when
trained on a 5:5 ratio. Likewise, rows 4 and 6 correspond to the 6:4 panel in Fig. 5, but this distribution is flipped in row 4 to display the results in terms of the
minority variant. Bottom: The stationary distribution shows the percentage of learners who will produce each output ratio, after the ratios have evolved for an
arbitrarily large number of generations. Each stationary distribution is the solution to the matrix above it.

Fig. 12. Same learning biases lead to different degrees of regularization after
many generations of cultural transmission. Dark grey: Average change in en-
tropy after one learning cycle (same data in Fig. 6, reprinted here for com-
parison). Light grey: Average change in entropy of variants after convergence to
the stationary distribution (i.e. after an infinite number of learning cycles).
Error bars indicate 95% confidence intervals, computed by the bootstrap per-
centile method (Efron, 1979) on 10,000 resamples of the transition matrix,
where each matrix was solved for its stationary distribution and mean change in
entropy.
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Ferdinand et al.’s conclusions

Effects of domain and demand on regularization
• More regularization on linguistic than non-linguistic tasks (why?)
• More regularization when under greater cognitive load
Regularization effects mainly in recall (not encoding)
Simulation of iterated learning can reveal additional differences in 
regularization (cf. marbles6 vs words1)



Time for Q&A/discussion on this week’s reading 



Next up

Wednesday, 9am: lab
• A frequency learning experiment

Next week:
• Perceptual learning, audio stimuli


